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A B S T R A C T

Alzheimer’s disease (AD) is heterogeneous, but existing methods for capturing this heterogeneity through
dimensionality reduction and unsupervised clustering have limitations when it comes to extracting intricate
atrophy patterns. In this study, we propose a deep learning based self-supervised framework that characterizes
complex atrophy features using latent space representation. It integrates feature engineering, classification, and
clustering to synergistically disentangle heterogeneity in Alzheimer’s disease. Through this representation
learning, we trained a clustered latent space with distinct atrophy patterns and clinical characteristics in AD, and
replicated the findings in prodromal Alzheimer’s disease. Moreover, we discovered that these clusters are not
solely attributed to subtypes but also reflect disease progression in the latent space, representing the core di-
mensions of heterogeneity, namely progression and subtypes. Furthermore, longitudinal latent space analysis
revealed two distinct disease progression pathways: medial temporal and parietotemporal pathways. The pro-
posed approach enables effective latent representations that can be integrated with individual-level cognitive
profiles, thereby facilitating a comprehensive understanding of AD heterogeneity.

1. Introduction

Alzheimer’s disease (AD) is a complex disorder with various clinical
and pathological manifestations (Scheltens et al., 2017; Armstrong et al.,
2000; Murray et al., 2011; Ritchie and Touchon, 1992; Lam et al., 2013;
Whitwell et al., 2012) that render its diagnosis and treatment chal-
lenging. Over the last decade, to explain the diversity of these mani-
festations or heterogeneity, researchers have categorized the disease
into various subtypes. These classifications have often been based on
factors such as atrophy patterns (Noh et al., 2014; Park et al., 2017;
Ferreira et al., 2017) or the presence of neurofibrillary tangles (Lowe
et al., 2018; Whitwell et al., 2018). Multiple studies have identified four
subtypes, namely typical, limbic predominant, hippocampal predomi-
nant, and minimal atrophy (Byun et al., 2015; Ferreira et al., 2020;
Poulakis et al., 2018). However, it remains uncertain whether these
subtypes represent systematic variation or merely reflect differences due

to the different stages of disease progression. Poulakis et al. (2022)
demonstrated that the minimal atrophy, limbic predominant, and
typical atrophy subgroups occur at different stages of the same disease
trajectory, supporting that the disease stage is crucial in understanding
heterogeneity (Young et al., 2018; Vogel et al., 2021; Young et al., 2022;
Mohanty et al., 2023; Ossenkoppele et al., 2019; Habes et al., 2020).
Severity and typicality have been identified as two critical dimensions
that can contribute to this variation (Ferreira et al., 2020). Therefore, it
is essential to disentangle disease progression and the subtypes to un-
ravel the complexities of disease heterogeneity, which will aid in facil-
itating diagnosis and personalized treatments.

Previous studies on heterogeneity of AD have commonly employed
clustering, an unsupervised technique, to group individuals based on
their similarities (Noh et al., 2014; Park et al., 2017; Poulakis et al.,
2018; Kim et al., 2019). Recently, researchers have been increasingly
focusing on dimensionality reduction techniques to extract meaningful
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features from the data to uncover heterogeneity (Zhang et al., 2016; Ten
Kate et al., 2018; Kwak et al., 2021; Wen et al., 2022). These techniques
operate in a latent space, a compressed and low-dimensional represen-
tation that retains essential information, while discarding irrelevant
details from the original data (Hinton and Salakhutdinov, 2006; Bishop
and Nasrabadi, 2006; Murphy, 2012; Bengio et al., 2013; Goodfellow
et al., 2016). Particularly with deep learning methods, many studies
have demonstrated the power of latent representations in identifying
significant disease features from neuroimaging dataset (Yang et al.,
2021; Yang et al., 2024; Martí-Juan et al., 2023; Yu et al., 2019; Li et al.,
2021). By establishing an easily interpretable and separable latent
space, these methods offer a valuable approach to disentangle disease
heterogeneity along arbitrary axes. Cho et al. (2020) attempted to
disentangle the underlying axes of heterogeneity in a data-driven
manner, while its use of a linear dimensionality reduction method
limited its ability to capture complex nonlinear relationships between
the original data and the latent features.

Self-supervised learning has emerged as a promising technique to
capture complex features and generate biologically interpretable latent
representations (Wang et al., 2021; Ericsson et al., 2022; Jing and Tian,
2020; Leeb et al., 2022). However, its application in unraveling disease
heterogeneity has been limited because of its reliance on large unlabeled
datasets, such as web-scale corpora (Brown et al., 2020), whereas the
neuroimaging datasets are limited (Esteva et al., 2019; Pan et al., 2023;
Krishnan et al., 2022). Nevertheless, self-supervised learning has the
ability to generate its own labels, denoted as pseudo-labels, guiding the
creation of latent representation through clustering-based models (Zhan
et al., 2020; Caron et al., 2018; Caron et al., 2020) despite the limited
availability of datasets, making it applicable in this domain-specific
context. As such, clustering-based self-supervised learning is particu-
larly suitable for extracting intrinsic heterogeneous features from brain
atrophy. To the best of our knowledge, this is the first attempt to
introduce self-supervision to address heterogeneity of AD.

In this study, we used a deep self-supervised framework to disen-
tangle intrinsic heterogeneous features from brain atrophy in AD pa-
tients. Our approach learned a clustered latent space that revealed
distinct atrophy patterns and clinical characteristics. It did not directly
align with disease subtypes but rather emerged as a result of a mixing
effect with disease progression. Notably, the latent space learned in AD
was disentangled along two dimensions: disease progression and sub-
types. We were able to replicate this disentangled pattern in prodromal
AD, indicating sustained heterogeneity in the early stage of the disease.
Furthermore, we identified two distinct longitudinal progression pat-
terns: medial-temporal and parietotemporal pathways, which exhibited
a directed bottom-to-top flow in the latent space, without crossing
subtypes. This observation is significant as it demonstrates the consis-
tent disentangled dimensions of progression and subtypes across various
stages of AD, and individual longitudinal observations. Our compelling
results would provide valuable insights into heterogeneity of the
disease.

2. Materials and methods

2.1. Participants

We utilized 1724 T1-weighted structural magnetic resonance imag-
ing (MRI) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (http://adni.loni.usc.edu) and 1080 from Open Access Series of
Imaging Studies (OASIS). The ADNI dataset were categorized into three,
namely discovery, prodromal AD validation, and longitudinal valida-
tion. The discovery dataset, comprising 343 individuals with AD, was
used to develop our model and identify subgroups. The prodromal AD
validation dataset comprised 722 individuals with mild cognitive
impairment (MCI) allowing us to replicate the discovery experiment and
assess consistency in the early continuum. The longitudinal validation
datasets included 110 individuals with AD at baseline and two-year

follow-up visits, enabling the analysis of longitudinal progression.
Notably, the prodromal AD and longitudinal validation datasets were
not included in our model training. Additionally, 439 cognitively normal
(CN) individuals were included as a control group. For external vali-
dation, we used the OASIS dataset, comprising 218 individuals with AD
and 862 CN individuals to demonstrate the generalizability of our model
across different data.

2.2. MRI preprocessing and cortical atrophy

In the ADNI dataset without overlapping images, the following MRI
scan types were used: 1.5 T non-accelerated magnetization-prepared
rapid acquisition gradient echo (MP-RAGE) scans for the ADNI-1 group,
3 T non-accelerated MP-RAGE or inversion recovery spoiled gradient
echo (IR-SPGR) scans for the ADNI2 and ADNI-GO cohorts, and 3 T non-
accelerated MP-RAGE scans for ADNI3. Detailed MRI scanner protocols
and quality control are available online at https://adni.loni.usc.edu
/methods/documents/mri-protocols/. In the OASIS dataset, we
selected the latest version, OASIS3, which includes MRI scans with two
different field strengths: 1.5 T and 3 T (LaMontagne et al., 2019). Details
of MR quality control are provided by OASIS (Marcus et al., 2007).

We utilized cortical thickness obtained by processing raw MRI using
the standard FreeSurfer v.6.0 pipeline (http://surfer.nmr.mgh.harvard.
edu/). The individual cortical thickness values were transformed into
fsaverage space and resampled to ic3 vertex-level by barycentric inter-
polation (Winkler et al., 2012). The ic3 level has 1284 vertices,
including 642 vertices in each hemisphere. We selected this resolution as
it is known to offer a balance between feature dimension and resolution
for learning. This resolution is high enough to interpolate the brain
surface into a sphere and low enough to maintain a manageable feature
dimension considering data size (Winkler et al., 2018).

We calculated cortical atrophy of each patient, as described in pre-
vious research (Park et al., 2017; Kim et al., 2019; Lee et al., 2022).
W-score quantifies the extent of cortical thinning in the disease group as
compared to the CN group. To achieve this, we used multiple linear
regression (MLR) models to fit each vertex’s thickness of the normative
reference group to the covariates age, sex, and years of education. The
W-score was calculated as the difference between the real thickness of
the disease groups and the predicted thickness from the MLR model
(residuals in the disease group), divided by the standard deviation of
residuals in the normative reference group. Finally, atrophy is a vector
consisting of positive values created by converting the positive values of
W-score to 0 and multiplying the remaining negative values by − 1. This
allowed us to provide a quantitative measure of neurodegeneration in
our analysis.

2.3. Clinical characteristics

We used demographics and clinical characteristics, such as global
cognition, genetic biomarker, and cerebrospinal fluid (CSF) biomarker
provided by ADNI (Table 1). Individuals with one or two copies of the
APOE4 gene were considered to be APOE4 carriers. Individuals with
“AV45>1.1″ and “ABETA<880″ were categorized into amyloid-positive
(Landau et al., 2013; Hansson et al., 2018). In particular, longitudinal
diagnostic information was used to determine dementia conversion for
the prodromal AD validation dataset. The categories for dementia con-
version were converter, non-converter, and missing. We classified in-
dividuals who were converted to AD within 36 months from the first
visit without being censored as converter (Supplementary Note).
Furthermore, we used cognitive scores from four domains: memory,
executive, language, and visuospatial. Among the numerous cognitive
variables provided by ADNI, we used only scores that all subjects have.
For prodromal AD dataset, the scores of three domains except for vi-
suospatial were used due to missing data. For the OASIS3 dataset, we
also included demographics and clinical characteristics such as global
cognition, genetic biomarker, and CSF biomarker. Individuals with one
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or two copies of the APOE4 gene were classified as APOE4 carriers.
Amyloid positivity was determined using the cut-off provided by OASIS
(https://theunitedconsortium.com/wp-content/uploads/2021/07/O

ASIS-3_Imaging_Data_Dictionary_v1.8.pdf).

Table 1
Demographic and clinical characteristics of the overall study population.

ADNI Discovery Prodromal AD validation Longitudinal validation Cognitively Normal

Baseline Follow-up

n 343 722 110 110 439
Diagnosis AD MCI AD AD CN
Age, years 75.2 ± 7.9 73.0 ± 7.5 75.7 ± 7.4 77.7 ± 7.4 74.0 ± 5.8
Sex, female (%) 162 (47) 301 (41) 50 (45) 50 (45) 228 (51)
Education, years 15.1 ± 3.0 15.9 ± 2.8 14.7 ± 3.0 14.7 ± 3.0 16.3 ± 2.7
MMSE 23.1 ± 2.0 27.5 ± 1.8 23.0 ± 2.1 18.3 ± 6.1 29.0 ± 1.1
CDRSOB 4.4 ± 1.6 1.5 ± 0.8 4.6 ± 1.7 7.7 ± 3.6 0.0 ± 0.1
APOE4 carriera (%) 221 / 330 (67) 370 / 720 (51) 74 / 106 (69) 74 / 106 (69) 126 / 438 (28)
Amyloid positivityb (%) 124 / 141 (87) 209 / 468 (56) 57 / 65 (87) 34 / 37 (91) 80 / 232 (33)
Converterc (%) – 217 / 516 (42) – – –

OASIS External validation Cognitively Normal

n 218 862
Diagnosis AD CN
Age, years 76.2 ± 7.2 68.7 ± 8.7
Sex, female (%) 100 (45) 498 (57)
Education, years 14.8 ± 2.9 16.1 ± 2.5
MMSE 24.8 ± 3.7 29.0 ± 1.2
CDRSOB 3.5 ± 1.8 0.0 ± 0.1
APOE4 carriera (%) 136 / 215 (63) 299 / 858 (34)
Amyloid positivityb (%) 88 / 101 (87) 151 / 643 (23)

Data are presented as n (%) or mean ± standard deviation.
a The number of APOE4 carriers among non-missing patients / the total number of APOE4 non-missing patients (%).
b The number of amyloid-positive patients among non-missing patients / the total number of amyloid non-missing patients (%).
c The number of converters among non-missing patients / sum of the number of converters and non-converters (%).

Fig. 1. Methodological overview. Our model comprises three components: atrophy representation learning, latent space clustering, and classification. Atrophy
vectors are transformed into latent space representations through an encoder. These representations are inputted into a clustering module and a classifier simul-
taneously. The clustering module produces pseudo-labels that guide the classifier’s predicted probabilities in a self-supervised manner. The model is trained to
minimize cross-entropy between the pseudo-labels and the predicted probabilities. Hyper-parameters, such as learning rate (lr) and the number of classification
iterations between clustering (re), are selected through 10-fold cross-validation and grid search. Optimal number of clusters (k) is determined by re-training the
model with the complete dataset.
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2.4. Clustering-based deep self-supervised learning

We used the clustering-based deep self-supervised learning frame-
work (Caron et al., 2018) to obtain deep latent representation unravel-
ing AD heterogeneity (Fig. 1). It facilitates simultaneous atrophy feature
extraction, clustering, and classification through an end-to-end learning
with an integrated loss function. Our framework consisted of three steps:
atrophy representation learning, latent space clustering, and classifica-
tion. An encoder compressed original atrophy vectors and yielded latent
representations of atrophy. A clustering module clustered the latent
representations of atrophy and assigned a pseudo-label to the individual
atrophy. Simultaneously, a classifier predicted the label (forward path).
By minimizing cross-entropy loss between the pseudo-labels and pre-
dicted probabilities, both the classifier and encoder were refined. It
contributes to the latent representations of atrophy (backward path).
The latent representations help to disentangle heterogeneity of the dis-
ease into key dimensions in the latent space.

The encoder (E) is a five-layer multi-layer perceptron (MLP) with
hidden neurons (1284, 256, 128, 64, and 16), transforming original
atrophy vectors into a 16-dimensional latent space denoted as L . The
encoder function E : R1284→L is represented as hi = Eθ(xi), where xi is
the atrophy vector of the i th subject, hi is its latent atrophy feature
vector, and θ represents the encoder parameters. The encoder employed
batch normalization and Relu activation functions between layers.

The output hi is then fed into two components: the clustering module
and the classifier. In the clustering module, the set {hi}

n
i=1 is clustered

into c subgroups using a Gaussian mixture model (GMM) (Bishop and
Nasrabadi, 2006) to address the issue associated with cluster vanishing
in k-means clustering[47]. The GMM function is expressed as[29]:

p(hi|η) =
∑c

k=1
πkN (hi|μk,Σk) (1)

Here, η represents the parameters of the clustering module, πk ∈ [0,1],
and

∑
πk = 1, with a multivariate Gaussian distribution N character-

ized by mean μk and covariance matrix Σk. The Mahalanobis distance
serves as the clustering metric to consider the covariance of each vari-
able in the latent space. The clustering module assigns a pseudo-label yi
to each individual through G : L→Y as yi = Gη(hi), where yi ∈ {0,1}c,
1Tyi = 1, and Y is the pseudo-label space.

The classifier, C : L→Ŷ , consists of a fully-connected layer and a
soft-max function. It predicts pseudo-labels from the clustering module,
generating the predicted probability ŷi = Cλ(hi), where ŷi ∈ [0,1]c, 1T ŷi

= 1, Ŷ is the predicted probability space, and λ represents the pa-
rameters of the classifier.

2.5. Training

Our model’s training alternates between optimizing the clustering
module and the neural backbone (encoder and classifier), with multiple
neural backbone updates for each clustering module update. Specif-
ically, the atrophy vectors first enter the MLP-based encoder and are
mapped into the latent space. These latent features are then fed into both
the clustering module and the classifier. In the clustering module, the
latent features are clustered by GMM and assigned pseudo-labels (first
learning: clustering module). In the classifier, the latent features are
converted into class probabilities. The encoder and classifier weights are
updated to minimize the cross-entropy between the pseudo-labels and
the class probabilities (second learning: neural backbone). During
training, the encoder and classifier undergo multiple updates between
clustering sessions. The GMM is optimized using the expectation-
maximization algorithm to maximize the likelihood estimate repre-
sented in Eq. (1). The loss function for the clustering module Lc is
defined as:

Lc =
∑n

i=1
− logp(hi|η) (2)

The neural-backbone’s parameters are updated to minimize the
cross-entropy between the pseudo-labels (target value of the classifier)
and the predicted probabilities. The loss function for the neural-
backbone Ln is expressed as:

Ln =
∑n

i=1
− yT

i logŷi (3)

The overall loss function is given by:

(θ∗, η∗, λ∗) = argmax
(θ, η, λ)

∑n

i=1

[
logp(Eθ(xi)|η)+Gη(Eθ(xi))Tlogq(Eθ(xi)|λ)

]
.

(4)

2.6. Hyper-parameter selection

For hyper-parameter selection, we employed grid search coupled
with 10-fold cross-validation. Notably, the choice of the number of
clusters (denoted as “k”) held substantial importance, as it impacted
both disease heterogeneity identification and latent representations.
Hyper-parameters such as learning rate (lr) and iteration counts between
cluster assignments (re) were selected for each k based on averaged
cross-entropy loss. The optimal value for kwas chosen using information
criteria, specifically AIC (Akaike information criterion) and BIC (Bayes
information criterion).

2.7. Model evaluation

We implemented nested cross-validation to evaluate our model’s
generalizability irrespective of hyperparameters. This process involved
10 outer folds and 2 inner folds. Each training split within the outer folds
was divided into 2 inner folds, where a grid search was conducted to
tune hyperparameters based on the average loss. The model’s perfor-
mance was then assessed on the test split of each outer fold, and the
results were averaged across all outer folds.

To assess the effectiveness of deep latent representations for feature
extraction, we conducted comparisons with two alternative models,
both equipped with a clustering module and a classifier but treated
separately. One model abstained from utilizing any dimensionality
reduction procedure, denoted as “GM+MLP”, while the other employed
the linear dimensionality reduction method principle component anal-
ysis (PCA), denoted as “PCA+GM+MLP”. Evaluation of these models
was based on classification accuracy and F1 score. Furthermore, we
calculated the adjusted mutual information (AMI) for two sets of
pseudo-labels generated by the clustering module in consecutive epochs.
This provided insights into the stability of clustering during the training
process in our model.

2.8. Latent representation

The latent space was structured as a metric space, using an averaged
Mahalanobis distance defined as follows:

D((x1, x2)) =
1
k
∑k

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2)TΣ− 1
j (x1 − x2)

√

(5)

Here,
∑

j represents the covariance matrix of the j-th cluster in the GMM.
The k Mahalanobis distances between two points, considering the dis-
tribution of each cluster, were computed for all clusters and then aver-
aged to encompass the entire cluster distribution. To visualize the latent
space, we applied multi-dimensional scaling (MDS) (Kruskal and Wish,
1978), a method that preserves distances between points in the latent
space, which is not achievable through other methods like PCA.

S. Kang et al.
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2.9. Trajectory visualization

Individual trajectories were delineated in the latent space using the
longitudinal validation dataset. Progression vectors, depicted as arrows
from baseline to follow-up points, were formulated. Employing a quad-
tree approach (Gargantini, 1982), the latent space was partitioned into
squared boxes to ensure a uniform subject distribution. Within each box,
progression vectors were averaged, forming tensors indicating the di-
rection of progression. In cases where a box lacked a progression vector,
these tensors were utilized for interpolation. Individual trajectories were
established from each person’s baseline point. By connecting or dis-
connecting the tensors among neighboring boxes, each trajectory rep-
resents the path of the individuals.

2.10. Atrophy reconstruction

We reconstructed atrophy patterns within the latent space for two
objectives: unveiling the significance of the latent space’s axis and
comprehending longitudinal trajectory. This reconstruction employed a
decoder mirroring the encoder’s structure, forming an encoder-decoder.
We fixed the encoder’s parameters and trained the decoder using the
same hyper-parameters selected for the encoder. To explore the axes,
10,000 atrophy vectors were reconstructed, accompanied by two
reference line segments. These vectors were grouped into four, and their
atrophy values were averaged. Additionally, atrophy vectors were
reconstructed along with two longitudinal trajectories at intervals of 0.1
distance in the latent space.

2.11. Statistical analysis

To compare atrophy patterns between each cluster and CN group, a
general linear model (GLM) was used. False discovery rate (FDR)
correction was applied to mitigate the impact of multiple comparisons.
The clinical characteristics of each cluster were compared using GLM for
continuous variables and logistic regression for categorical variables.
These comparisons were adjusted for age, sex, and year of education.

To estimate the change in cognitive function over time, a linear
mixed model (LMM) was employed. The response variable comprised
individuals’ mini-mental status examination (MMSE) scores. The
explanatory variables included a dummy-coded cluster indicator, time,
and their interaction. With random effects attributed to individuals and
the inclusion of covariates like as age, sex, and years of education, the
model accounted for individual variability and potential confounders.
The analysis entailed statistical tests for cognitive decline rates in each
cluster.

For estimating dementia conversion in prodromal AD, a Kaplan-

Meier survival analysis was conducted (Peto et al., 1976). In this anal-
ysis, individuals reverting to CN status were treated as censored at the
reference year. A log-rank test was implemented to compare survival
rates across clusters.

3. Results

3.1. Clustering-based self-supervised learning to understand AD
heterogeneity: model selection and evaluation

Our model learned latent representations of cortical atrophy in 343
patients with AD, grouping individuals with common latent atrophy
features. For training, we utilized the Adam optimizer with L2 regula-
rization at 10− 5 and a momentum of 0.9, using a mini-batch size of 64.
Optimal hyper-parameters per k were selected through cross-validation
(Fig. S1). The k selection and model evaluation process revealed
consistent clustering of latent features into four clusters (Fig. 2-a). Our
model demonstrated stability with a convergence AMI of 0.941 ± 0.052
(Fig. 2-b). Comparing our model with others using both clustering and
classification, GM+MLP lacks feature extraction, while PCA+GM+MLP
incorporates linear extraction; optimal k values were two and four,
respectively (Fig. 2-c). Accuracy, F1 score, and cross-entropy for the
optimal k values per comparison model were presented alongside our
model’s, highlighting our model’s superior performance across all
evaluation metrics with the discovery and external validation dataset
(Table 2). Additionally, our model showed better performance across
prodromal AD and longitudinal datasets except for a higher cross-
entropy loss observed in the longitudinal baseline dataset (Table 3).

3.2. Disentangled latent representation in patient with AD

The encoded atrophy features were distinctly separated along two
axes (axis 1 and axis 2) within the latent space, representing the four

Fig. 2. k selection and model evaluation process. (a) A k value for our model was selected based on Akaike information criterion and Bayesian information criterion,
with a consistent choice of four. (b) The stability evaluation of our model was assessed using adjusted mutual information (mean ± standard deviation), showing
convergence. (c) The selection of k values using the Akaike information criterion for comparison models. For the GM+MLP model, a value of two was chosen, while
for PCA+GM+MLP and our model, four was selected.

Table 2
Model comparison results using nested cross validation to assess performance
with discovery and external validation dataset. Our proposed model consistently
outperformed other models. Specifically, among the two comparisonmodels, the
one employing a linear extraction procedure demonstrated superior
performance.

Model k ACC (%) F1 score Cross-entropy

GM+MLP 2 63.58 ± 6.36 0.42 ± 0.07 2.00 ± 1.45
PCA+GM+MLP 4 79.00 ± 0.07 0.72 ± 0.10 0.53 ± 0.14
Ours (discovery) 4 91.53 ± 3.66 0.89 ± 0.06 0.26 ± 0.09
Ours (external) 4 91.72 ± 7.29 0.92 ± 0.05 0.45 ± 0.51

S. Kang et al.
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cardinal directions (Fig. 3a). Each of the four clusters exhibited a distinct
pattern of atrophy (Fig. 3b). Out of 343 individuals, 78 (22.7 %) in-
dividuals displayed the typical atrophy pattern of AD with balanced
atrophy in the medial-temporal and parieto-temporal cortices and
greater atrophy throughout the cortex compared to that of CN in-
dividuals (typical atrophy, Typ). The second cluster consisted of 121
(35.3 %) individuals with medial-temporal predominant atrophy, where
substantial atrophy occurred in the entorhinal and parahippocampal
areas (medial-temporal predominant, MT). Additionally, 38 (11.1 %)
individuals exhibited predominant parieto-temporal atrophy, where
parietal areas, including the precuneus and superior and inferior parietal
lobules, were affected (parieto-temporal predominant, PT). The
remaining 106 (30.9 %) patients showed minimal atrophy with no sig-
nificant cortical thinning, except in the entorhinal cortex (minimal at-
rophy, Min).

We further compared the demographics and clinical characteristics
of each cluster, including genetic traits (APOE4 carrier status), CSF

Table 3
Test results for prodromal AD and longitudinal (baseline and follow-up) data-
sets. Our model showed better performance than others across all datasets
except for a higher cross-entropy loss observed in the longitudinal baseline
dataset.

Data Model ACC (%) F1 score Cross-entropy

Prodromal AD GM+MLP 64.27 0.39 5.33
PCA+GM+MLP 76.04 0.58 0.85
Ours 88.64 0.82 0.83

Longitudinal
(Baseline)

GM+MLP 86.79 0.83 0.80
PCA+GM+MLP 80.19 0.73 0.52
Ours 100 1.0 0.70

Longitudinal
(Follow-up)

GM+MLP 84.91 0.81 1.31
PCA+GM+MLP 73.58 0.63 0.80
Ours 91.50 0.870 0.79

Fig. 3. Four distinct clusters in patients with AD. a. The latent space is effectively disentangled by vertical (axis 1) and horizontal (axis 2) axes. Level curves are
overlaid on decision regions, illustrating each cluster’s density distribution in the latent space. b. Each row represents atrophy patterns for identified clusters. Color
signifies a negative logarithm p-value, denoting statistically significant increases in vertex level atrophy compared to CN individuals. P-values were derived from
fitted GLMs with subsequent FDR correction. c. Clinical characteristics of each cluster were compared, adjusting age (except in the case of age), sex, and years of
education (except in the case of education). An asterisk (*) indicates significant differences in characteristics between two clusters.
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biomarkers of amyloid-beta, and cognitive scores (Fig. 2c and Table S2).
In the MMSE, the Typ cluster exhibited worse scores than the MT cluster
(p = 0.0200, t = 2.3462). Similarly, in the clinical dementia rating sum
of boxes (CDRSB), the Typ cluster performed worse than the PT and Min
clusters (pPT= 0.0495, tPT= 1.9038; pMin= 0.0423, tMin= 1.9538). The PT
cluster included significantly younger patients than the other clusters
(pTyp< 0.001, tTyp= 3.7976; pMT< 0.001, tMT= 5.3491; pMin< 0.001,
tTyp= 5.0913). They were also significantly more educated than the Typ
and MT clusters (pTyp= 0.0442, tTyp= 2.0120; pMT= 0.0419, tMT=

1.7996). In addition, individuals with PT displayed significantly worse
executive (pMT= 0.0129, tMT= 2.5171; pMin= 0.0046, tMin= 2.8810) and
visuospatial (pMT= 0.0413, tMT= 2.0603; pMin= 0.0048, tMin= 2.8767)
function than those in the MT and Min clusters, but better memory
function than those in the Typ cluster (p = 0.0426, t = 1.19611). On the
other hand, the MT cluster showed worse language (pPT= 0.0361, tPT=
2.1158; pMin= 0.0442, tMin= 1.9363) and memory scores (not

significant) than the PT and Min clusters.

3.3. Exploration of heterogeneity in prodromal AD

Our model was applied to 722 prodromal AD patients to explore
heterogeneity in the early continuum. The distribution pattern of atro-
phy features in the latent space was consistent with the AD case
(Fig. 4a), having similar atrophy patterns per cluster, albeit with a lower
overall atrophy level than AD (Fig. 4b). Furthermore, we observed
variations in the distribution ratios of each cluster between AD and
prodromal AD (Fig. 4c). The proportion of Typ individuals in the pro-
dromal AD group was approximately half lower than that in the AD
group, while the proportion of individuals assigned to the Min cluster
was doubled in the prodromal AD group. Moreover, the PT cluster in the
prodromal AD group had fewer individuals than that in the AD group,
whereas theMT cluster in the prodromal AD accounted for a comparable

Fig. 4. Validation in prodromal AD. a. Prodromal AD individuals exhibit latent distributions akin to AD. Cluster-specific data points are marked by colored dots. b.
Atrophy maps highlight significant levels of atrophy compared to CN individuals. P-values were determined through GLMs and subjected to FDR correction. c.
Disparities in cluster proportions between AD and prodromal AD. d. Clinical characteristics of each cluster were compared, with adjustments for age (except in the
case of age), sex, and years of education (except in the case of education). An asterisk (*) means that two clusters show significantly different characteristics.
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percentage to that in the AD group.
Similar to the clinical characteristics of clusters in AD, the Typ cluster

exhibited significantly worse MMSE scores than the MT andMin clusters
(pMT= 0.0111, tMT= 2.5558; pMin< 0.001, tMin= 4.4734), while the Min
cluster showed significantly better MMSE scores across all the clusters
(pTyp< 0.001, tTyp= 4.4734; pMT= 0.0047, tMT= 2.8396; pPT< 0.001, tPT=
3.431) in prodromal AD (Fig. 3d and Table S2). The PT cluster included
significantly more highly educated individuals than the Typ and Min
clusters (pTyp= 0.0246, tTyp= 1.8811; pMin= 0.0022, tMin= 1.2615).
However, there were several distinct characteristics compared to the AD
cases. Individuals in the PT cluster were more likely to be APOE4 carriers
than those in the Typ and Min clusters (pTyp= 0.0246, tTyp= 2.248; pMin=

0.0022, tMin= 3.0578) and more likely to be amyloid-positive than those
in the Typ (p < 0.001, t = 26.99). Furthermore, this cluster scored
significantly worse on memory (pMT= 0.0141, tMT= 2.4725; pMin<

0.001, tMin= 4.7462) and execution (pMT< 0.001, tMT= 3.5143; pMin<

0.001, tMin= 4.7464) function than the MT and Min clusters and on
language functions than the Min cluster (p < 0.001, t = 3.4611).

The dementia conversion ratios in the PT cluster were observed to be
significantly higher than those in the MT andMin clusters (pMT= 0.0097,
tMT= 2.5873; pMin< 0.001, tMin= 3.3991). We estimated survival distri-
butions for all the clusters and compared the distributions using the log-
rank tests (Fig. 5). The median survival time of the Typ cluster was 19.2
months and that of the PT cluster was 21.2 months. We found that all the
clusters showed a significant difference from one another, except for the
Typ and PT clusters (Table S3).

3.4. Disentangled key dimensions: progression and subtype

To understand two key axes in the latent space (Figs. 3a and 4a), we
reconstruct atrophy vectors using a decoder that takes the latent rep-
resentations as inputs. We utilized 110 atrophy of AD patients at base-
line in the validation dataset. The atrophy was reconstructed along the
two dashed black lines (Fig. 3a). Along axis 1, progressive one-sided

(from left to right) atrophy was observed in various regions, including
the medial and lateral temporal, cingulate, and frontal cortices (Fig. 6a).
Conversely, for axis 2, moving in the negative direction, atrophy pri-
marily affected the medial-temporal region, while becoming less pro-
nounced in other regions. In contrast, moving in the positive direction,
atrophy became more prominent in the parieto-temporal and prefrontal
cortices.

We further examined the significance of the two axes by assessing the
association between each axis’s coordinate values and potential key
determinants of heterogeneity, such as age, cognition, and atrophy
progression. Notably, we found that axis 1 was strongly associated with
global atrophy levels (r = 0.7364, p < 0.001) and cognition (r =

− 0.4597, p = 0.0037), rather than age (Fig. 6b). Moreover, axis 1
showed a significantly positive correlation with vertex-level atrophy
throughout the brain (Fig. S2a). The MMSE scores were negatively
correlated with axis 1 across all clusters (Fig. 6c). Additionally, the slope
of the PT cluster was significantly steeper than those of the other clusters
(Fig. 6d and Table S4). These observations suggest that as axis 1 in-
creases, the rate of cognitive decline in the PT cluster would be faster
than those in the other clusters. Conversely, axis 2 exhibited significant
but not very strong correlations with age, global cognition, and global
atrophy (rage= − 0.2547, page< 0.001; rcog= − 0.1997, pcog= 0.0237;
ratrophy= 0.3510, patrophy< 0.001). In the vertex analysis, atrophy
demonstrated a positive association with axis 2, primarily in the parieto-
temporal area, while a negative association was observed in the frontal
and entorhinal cortices (Fig. 6e). Overall, these analyses suggest that the
latent space of brain atrophy in AD, or its heterogeneity, can be disen-
tangled into two bases: progression (axis 1) and subtypes (axis 2).

3.5. Two distinct trajectories in latent space

Using 220 atrophy vectors of patients at baseline and follow-up in the
longitudinal validation datasets, the progression vectors of individuals
were examined in the latent space as arrows (Fig. 7a). This analysis

Fig. 5. Kaplan-Meier analysis for dementia conversion in prodromal AD. Survival distributions for each cluster are depicted in this figure. Log-rank tests were applied
to compare distributions between two clusters. An asterisk (*) indicates significant differences between the two distributions.
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revealed two distinct pathways in this progression: one pathway led
from Min to MT and then to the Typ cluster, and the other involved
progression from Min to PT and then to the Typ cluster. There was no
transition between the MT and PT clusters (Fig. S2b). By estimating
individual trajectories, as expected, they exhibited a diamond shape
with a Y-shaped bifurcation in the bottom half and an inverted Y-shaped
convergence in the upper half (Fig. 7b and Fig. S3). Two branches
originating from the Min cluster progressed towards the MT and PT
clusters and merged into a single large trunk within the Typ cluster. This
trunk then stretched in the top-right direction, indicating the

convergence of neurodegeneration. Notably, these pathways were
clearly separated with no overlapping between the PT and MT clusters,
before converging into the Typ cluster. These findings not only provide
additional evidence that the disease heterogeneity can be disentangled
by stage and subtype but also suggest two distinct progression pathways.

To understand the atrophy patterns along these pathways, we used
the decoder, which reconstructs atrophy from latent representations.
Atrophy was reconstructed along the two trajectories, T1 and T2.
Several points on each trajectory were sampled with even lengths,
interpolated by the corresponding latent representations. We revealed

Fig. 6. Interpreting latent space axes. a. Patterns of reconstructed atrophy along each axis exhibit distinctive characteristics. b. Correlations were computed between
each axis and determinants of heterogeneity: age, cognition, and atrophy. An asterisk (*) denotes significant correlations, with “r” indicating the correlation co-
efficient. c. Linear lines were fitted between axis 1 and MMSE for each cluster. “w” represents the corrected estimated slope between axis 1 and MMSE, adjusting for
age, sex, and year of education. d. Comparison of MMSE decline rates across clusters while increasing axis 1. Significant differences are highlighted in blue. e. Colors
indicate significant positive or negative correlations between vertex-level atrophy and axis 2.

S. Kang et al.



NeuroImage 297 (2024) 120737

10

Fig. 7. Longitudinal progression in latent space. a. Individual progressions from baseline to follow-up are indicated by arrows within latent space. Baseline cluster
assignments are color-coded. b. Individual trajectories are estimated. Each trajectory is depicted by a color-varying line, denoting the corresponding cluster at that
location. c. Atrophy progression patterns of two trajectories (T1 and T2) are reconstructed. These trajectories commence at Min and culminate at Typ, traversing MT
and PT, respectively. d. Longitudinal MMSE scores are estimated per cluster via linear mixed effect models, adjusted for age, sex, and education. e. Comparison of
MMSE decline slopes across clusters. Significant differences are highlighted in blue.
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two progressive patterns of neurodegeneration (Fig. 7c). Specifically, T1
showed atrophy that focused on the entorhinal cortex in the early stage,
which spread to the hippocampal gyrus, followed by severe engagement
of the temporal and parietal areas (medial-temporal pathway). This
pathway had a slow progression rate. On the other hand, T2 showed
similar atrophy in all the areas in the early stage, which spread to the
fusiform, precuneus, and superior temporal gyri, and then displayed
deeper atrophy in the parieto-temporal and frontal cortices (parieto-
temporal pathway). This pathway exhibited a faster deterioration rate.
To further investigate the rate of progression in each cluster, the lon-
gitudinal MMSE scores were estimated using LMM (Fig. 7d). These re-
sults show that except for the Typ cluster, the PT cluster experienced a
significantly faster decline in MMSE scores than all the other clusters
(pMT= 0.0082, tMT= 2.6691; pMin= 0.0423, tMin= 2.0436) (Fig. 7e). In
contrast, the MT cluster exhibited a significantly slower decline than all
the other clusters, except for the Min cluster (pTyp< 0.001, tTyp= 4.0274)
(Table S5).

4. Discussion

To understand AD heterogeneity, many studies have focused on
systematic subtypes in the past decade (Whitwell et al., 2012; Noh et al.,
2014; Park et al., 2017; Ferreira et al., 2017; Lowe et al., 2018; Whitwell
et al., 2018; Poulakis et al., 2018; Habes et al., 2020). However, there
has been a disagreement regarding the number of these subtypes
(Ferreira et al., 2020; Habes et al., 2020) and the underlying factors
contributing to this heterogeneity (Ritchie and Touchon, 1992; Lambert
and Amouyel, 2007; Lo et al., 2019; Smirnov et al., 2022). To address
this, we disentangled AD heterogeneity into two factors, revealed as
progression and subtype, using the deep latent representation with a
self-supervised framework.

Our model excelled compared to clustering alone or clustering with
linear dimensionality reduction. It showcased superior feature extrac-
tion using deep latent representations over linear methods (Cho et al.,
2020). Self-supervised learning with pseudo-labels improved classifi-
cation performance compared to other semi-supervised methods (Varol
et al., 2017). Our external validation demonstrated our model’s gener-
alizability across different datasets, given the same number of parame-
ters and possible choices of architecture in the framework. With the
highest F1-score, surpassing even accuracy, it demonstrated robustness
in handling class-imbalance, consistent with previous studies (Caron
et al., 2018). Predictive ability for prodromal AD patients and longitu-
dinal scans closely followed that for AD cases, affirming the model’s
efficacy across the entire AD cycle.

In line with previous studies (Ferreira et al., 2017; Byun et al., 2015;
Ferreira et al., 2020; Poulakis et al., 2018), our analysis revealed four
clusters each separated into four cardinal directions within the latent
space. In particular, the Typ and Min clusters, which represent disease
severity, were located at the top and bottom of the latent space,
respectively. On the other hand, the MT and PT clusters, which are
well-known representatives of variation in AD (Habes et al., 2020), were
located at the left and right sides of the latent space, respectively. This
clear separation in the latent space indicates the effective disentangle-
ment of progression and subtype. Based on the global cognitive scores,
the Typ cluster demonstrated the worst scores, while the Min cluster
displayed the best score across all the clusters. Additionally, prodromal
AD, which precedes AD, showed higher proportions of the Min cluster
and lower proportions of the Typ cluster than AD, supporting the hy-
pothesis that the Min and Typ clusters imply a different disease con-
tinuum rather than subtypes. Furthermore, the atrophy patterns
decoded along the vertical axis showed progressive deterioration,
strongly associated with cognitive scores. In contrast, the reconstructed
atrophy along the horizontal axis showed two distinct patterns,
reflecting an atypical subtype.

We identified clinical differences between the PT and MT types in
patients with AD and prodromal AD. In AD, the individuals in the PT

type were likely to be younger than those in the MT type, which is
consistent with studies investigating the relationship between early age
at onset and extensive parietal involvement (Ossenkoppele et al., 2012).
The PT type also demonstrated higher education levels, consistent with
previous studies (Ferreira et al., 2020; Poulakis et al., 2022). Executive
and visuospatial scores were worse in the PT group, whereas the
memory and language functions were more impaired in the MT group,
consistent with previous studies on cognitive domain differences ac-
cording to subtype (Byun et al., 2015; Zhang et al., 2016; Smits et al.,
2012). Additionally, the PT type exhibited a faster cognitive decline
rate, whereas the MT type showed a slower decline rate, which is
consistent with the previous studies (Byun et al., 2015; Stanley et al.,
2019). In prodromal AD, the PT type had the highest proportion of
APOE4 carriers and amyloid-beta positive, which is consistent with the
results of previous studies (Kim et al., 2019; Ten Kate et al., 2018).
Additionally, the PT type was more likely to convert to dementia with a
faster conversion time than that of the MT type. This is consistent with
the results of previous studies on the characteristics of PT type dementia
conversion (Kim et al., 2019; Na et al., 2016). As mentioned above, there
was a smaller PT type population in prodromal AD than in AD, which is
attributed to we thought the early conversion to dementia of the PT type,
whereas a moderate incidence of dementia conversion for the MT type in
prodromal AD could lead to an equivalent MT type population in AD.
Despite the early and faster declines of atrophy and cognition in the PT
type, there was no difference in the global cognitive scores at the disease
stage between MT and PT types. We postulated that it is likely attributed
to modulatory factors such as the cognitive reserve since the education
level known as a proxy of cognitive reserve was higher in the PT type
than the MT type.

Our longitudinal analysis of latent space provided valuable insights
into the progression of AD. The diamond-shaped trajectories and the
reconstructed atrophy along the trajectories demonstrated two distinct
pathways of progression. The first, represented by the T1 branch that
sequentially proceeded through three clusters, Min, MT, and Typ, is
analogous to the Braak stages, which describe the stereotypical tau pa-
thology and neurodegeneration, beginning with the entorhinal region
and spreading to the hippocampal cortex and temporal area (Braak
et al., 2006). These branches were referred to as “medial-temporal
pathways". In contrast, the other, represented by the T2 branch from
Min through PT to Typ, showed that atrophy occurs in the perirhinal
cortex and spreads to the fusiform, precuneus, and temporal regions.
These branches were referred to as “parieto-temporal pathways.” The
worse visuospatial function of the PT type than that of the MT type is
likely attributed to the deterioration in the perirhinal cortex and fusi-
form gyrus involving the visual function (Ferko et al., 2022), even more
than the entorhinal cortex (Weiner and Zilles, 2016). The progressive
patterns are closely aligned with those reported in previous findings
(Young et al., 2018) and the faster atrophy deterioration in the
parieto-temporal pathways than that in the medial-temporal pathways is
in line with previous studies (Vogel et al., 2021). Notably, the disease
progression eventually converged into the typical pattern. Additionally,
this latent space analysis provides a more specific investigation of het-
erogeneity over time, unlike previous studies that mainly demonstrated
the longitudinal change of subtype via the cluster transition result
(Fig. S2b). In our case, for example, a large proportion of individuals in
MT (36 / 50 = 72 %) and PT (5 / 9 = 55 %) appeared to remain within
their respective clusters after 2 years according to the cluster transition
result. Not quite the same as this result, we observed that they exhibited
movement in the latent space (Fig. S2c).

5. Limitation

Our study had some limitations. Only atrophy data was used to
identify disease heterogeneity and other imaging modalities were not
considered. To ensure the fundamental assumption of deep learning, the
central limit theorem, a sufficiently large dataset is required.
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Unfortunately, owing to the shortage of data, we were unable to utilize
other imaging modalities, such as tau PET molecular imaging. In future
studies, we plan to utilize cumulated tau PET imaging to reveal the re-
lationships between tau accumulation patterns and neurodegeneration
subtype by adopting causality-based explainable artificial intelligence
techniques to explore heterogeneity of AD. Secondly, longitudinal
analysis requires data with more time points to capture disease pro-
gression over an extended period. Nevertheless, our study consistently
demonstrated reliable results, effectively validating our findings and
uncovering significant insights in the latent space. Future studies would
greatly benefit from expanding the dataset with additional time points to
enhance the depth of analysis and capture the longitudinal dynamics of
AD.

6. Conclusions

This study disentangles the key factors of heterogeneity: progression
and subtypes in a fully data-driven manner and presents two progressive
pathways in AD using a self-supervised deep learning mechanism. We
established deep latent representations of brain atrophy, which could be
integrated with other deep learning model enabling to be fused with
other modalities or to explain the results, which lead to comprehensively
understanding the disease. Furthermore, we demonstrated the consis-
tency of our model for prodromal AD, thereby establishing a foothold for
the early diagnosis of AD. We believe that this framework could help in
understanding disease stages and subtypes, unraveling the complexity of
the disease heterogeneity and paving the way for more effective treat-
ments and patient-tailored brain rehabilitation (Yu et al., 2019; Yu et al.,
2023; Yu et al., 2018) based on various deep learning model.
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